Parametric Identification of Damage Parameters of LS-DYNA Gurson Material Model

Karthik Chittepu
Ganesh Gadekar, Kedar Joshi

3rd Optimization & Stochastic Days 2013, Sep 23-24, Bangalore, India
Acknowledgement

Project has been carried out as a collaboration

CADFEM India
 Karthik Chittepu

Tata Motors
 Ganesh Gadekar
 Kedar Joshi
Importance of crash simulation?
- Safety

Why simulating?
- Compression of development cycles
- Cost reduction

Why optiSLang?
- Unknown sensitivities
- Many parameters
Why Gurson Material Model?

- Increasing requirement on crash safety of automotive components
- Also increasing demand of light weight and cost efficient components
- Accurate prediction and numerical simulation of fracture and material failure
Methodology

- **Boundary Conditions**
- **Mesh**
- **Uniaxial Tensile test**
- **Effective Plastic Strain & Effective Stress**
- **Damage Parameter (EN, FC, FF0, F0, SN, and FN)**

Input Parameters

- **CAD Model**
- **LSDYNA Pre Processing**
- **LSDYNA Gurson Material Model**
- **LSDYNA (Batch-Run)**
- **LSDYNA Post processing**
- **optiSLang**
- **Post processing in optiSLang**

Output Parameters

- **Plasticity Area**
- **Failure Strain**

New Parameter set

Uniaxial Tensile test

3rd Optimization & Stochastic Days 2013: Sept 23-24, Bangalore
Uniaxial Tensile Test & Simulation Model

- Tensile test is carried with one end fixed and constant rate of motion on the other end
- Force and displacement are measured
- Engineering stress-strain curves is plotted based on the measurements
- FE model is developed based on test specifications
Methodology

Boundary Conditions
Mesh
Uniaxial Tensile test
Effective Plastic Strain & Effective Stress

Input Parameters
Damage Parameter (EN, FC, FF0, F0, SN, and FN)

Output Parameters
Plasticity Area
Failure Strain

optiSLang

CAD Model
LSDYNA Pre Processing
LSDYNA Gurson Material Model
LSDYNA (Batch-Run)
LSDYNA Post processing
optiSLang
Post processing in optiSLang

New Parameter set

3rd Optimization & Stochastic Days 2013: Sept 23-24, Bangalore
Calibration of Effective Plastic strain and stress

- Besides Young’s Modulus and Poisson’s ratio, the input of a **uniaxial true stress-strain** function is required
- Usually determined by the **ASTM method**
- At material specific max. stress, **necking** of sample begins
- Stress **changes** gradually from the simple uniaxial tension to a complicated condition of biaxial stress
- After necking, **weighted average method** is used.

Where \(w = \) is the weight constant

\[
\sigma = \sigma_u [w (1 + \varepsilon - \varepsilon_u) + (1 - w) \left(\frac{\varepsilon}{\varepsilon_u} \right)]
\]
Methodology

- Boundary Conditions
- Mesh
- Uniaxial Tensile test
- Effective Plastic Strain & Effective Stress
- Damage Parameter (EN, FC, FF0, F0, SN, and FN)
- Input Parameters
- OptiSLang
- Plasticity Area
- Failure Strain
- Output Parameters
- New Parameter set
- 3rd Optimization & Stochastic Days 2013: Sept 23-24, Bangalore

- CAD Model
- LSDYNA Pre Processing
- LSDYNA Gurson Material Model
- LSDYNA (Batch-Run)
- LSDYNA Post processing
- OptiSLang
- Post processing in OptiSLang
Gurson Material Model

- In metals and metallic alloys ductile fracture is linked to the micromechanical process of micro-voids growth to coalescence.
- Gurson Model adopts this void growth and nucleation approach.
- Under plastic deformation, the material strain hardens, and voids nucleate and grow, and subsequently lead fracture.

Ductile fracture process which consist of void nucleation, growth and coalescence.

- This behaviour is governed by the damage parameters.
Damage Parameters

- In this parametric identification process the following damage parameters in the Gurson model has to be identified:

 - FC: which is the critical void volume fraction, where voids begin to aggregate.
 - EN: which is the mean nucleation
 - FF: which is the failure void volume fraction
 - F0: which is the initial void ratio
 - SN: which is standard deviation of EN
 - FN: which is void fraction of nucleation particles
 - FF0: which is failure void fraction

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Reference Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.03</td>
</tr>
<tr>
<td>FC</td>
<td>0.15</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>FF0</td>
<td>0.25</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>FN</td>
<td>0.04</td>
<td>0.001</td>
<td>0.2</td>
</tr>
<tr>
<td>EN</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>SN</td>
<td>0.1</td>
<td>0.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Workflow

Boundary Conditions
Mesh
Uniaxial Tensile test
Effective Plastic Strain & Effective Stress

Input Parameters
Damage Parameter (EN, FC, FF0, F0, SN, and FN)

Output Parameters
Plasticity Area
Failure Strain

CAD Model
LSDYNA Pre Processing
LSDYNA Gurson Material Model
LSDYNA (Batch-Run)
LSDYNA Post processing
optiSLang
Post processing in optiSLang

New Parameter set

3rd Optimization & Stochastic Days 2013: Sept 23-24, Bangalore
Post Processing

• After the simulation the force and displacement are estimated.
• Based on these value Stress-strain plot is plotted.
• For the parametric identification following parameters are calculated from the stress-strain curve

 – Area Under Plastic Region
 – Maximum stress
 – Failure Strain

3rd Optimization & Stochastic Days 2013: Sept 23-24, Bangalore
Workflow

Boundary Conditions
- Mesh
- Uniaxial Tensile test

Effective Plastic Strain & Effective Stress

Input Parameters
- Damage Parameter (EN, FC, FF0, F0, SN, and FN)

Output Parameters
- Plasticity Area
- Failure Strain

Uniaxial Tensile test

LSDYNA Pre Processing

LSDYNA Gurson Material Model

LSDYNA (Batch-Run)

LSDYNA Post Processing

Post processing in optiSLang

optiSLang

New Parameter set

CAD Model
Basic Criteria

1. Difference of area under plastic region between Test and Simulation
 Target: 0

2. Difference of maximum stress between Test and Simulation
 Target: 0

3. Difference of failure strain between Test and Simulation
 Target: 0
Sensitivity Analysis

- Sensitivity analysis is used to scan the design space by varying design optimization parameters within upper and lower bounds
- **Global Sensitivity** of responses with respect to design variables variation
- Identification of important input parameters and possible reduction of the design space dimension for optimization
- **Understanding and verification** of the optimization problem
- Choosing a start design for optimization
- Proof of numerical robustness
- Preparation of the optimization problem and reduction of the problem dimension

Latin Hypercube Sampling
• EN, FN, SN and FF0 have major influence on maximum stress value of the curve

• EN, FF0 and FN have major influence on the failure strain and area under plasticity region.

• All design parameters are considered for optimization
Optimization - Evolutionary Algorithm

- Evolutionary algorithm is used. It's a metaheuristic algorithm. This algorithm is selected due to the low computation time of each design in this project.

- Evolutionary algorithm usually features
 - Robust
 - Can handle any complexity
 - Takes time to converge
Optimization - Evolutionary Algorithm

Objective History

Best Design Data

Output Data of Best Design

Damage parameters of the optimized Gurson material are shown in figure above (Best Design Data)
Summary

- In Crash simulation, numerical simulation of fracture and material failure is important.
- **Gurson Material model** can define the material failure using the void growth and nucleation approach.
- Identification of the *damage parameters* of the Gurson Material model through tests in expensive.
- Material identification task is completed automated using **optiSLang**.
- **Sensitivity analysis** is carried out to find out most influential design parameters and also start design for optimization.
- All design parameters are considered for optimization.
- **Evolutionary algorithm** is used due to low simulation time for each design.
- More research has to be done to understand the Gurson model behavior.
Thank You