optiSLang in functional development of hydraulic valves

The green way.

J. Krebs
07.06.2019
1. Hilite simulation department and the usage of optiSLang
2. Simulation task
3. Simulation methods, procedure and results
 1. Potential analysis / System simulation
 2. Simulation approach
 3. CFD-Simulation with optiSLang
 4. System simulation based on CFD-MOP in optiSLang
 5. 2. Level - Re-evaluation
5. Summary
Hilite simulation department and optiSLang

Simulation department

- Engine
- Transmission
- CFD
- System
- CSM/Fatigue
- CEM
- RDO
Examples of projects using optiSLang
- to calibrate system simulation components
- combined with CFD to optimize the flow rate / jet force curves
- to define tolerance classes
- combined with system simulation to reduce scrap by manufacturing tolerances
- to optimize electromagnetic force-curves of the actuator
- to investigate the magnetic properties (B-H-curves) of materials after manufacturing
- combined with CSM to reduce press fit force
- combined with CFD and system simulation to optimize the system behaviour of our products
Operating mode of a directional valve (4/4)

- Electro-magnetic actuator creates a force controlled via TCU* current
- The spring force acts against the magnetic force to reach a static equilibrium
- The spool position controls the opening of the ports and the flow rate
- TCU* can control the flow rate
- Challenge: flow generates a significant force

*: Transmission Control Unit
Simulation task and general approach

Task:
- increasing the flow rate on the A- and B-side
 → optimization PA, PB, AT, BT flow

Challenge:
- order the part within 3 weeks

07.06.2019 J. Krebs / Hilite Germany GmbH
4.1 Potential analysis / System simulation

- **First step**: Potential analysis → which port flow do I have to change in order to increase the flow rate in the A- and B-side
- Creation of the system simulation model which contains
 - CFD-fields for all port flows
 - Fields for the magnetic curves (force vs. stroke)
 - The AMESim component is modified to allow to scale the field input
 - This scale factor is used as an input in optiSLang

8 scaling factors, 300 design point (ALHS), 4 output parameters, 20 runs in parallel
4.1 Potential analysis / System simulation

- The results are not actual geometries but show the potential of a change, e.g. to increase the PB flow rate, also the AT flowrate need to be increased.
- Port flow to optimize: PA, PB, AT

<table>
<thead>
<tr>
<th>Models</th>
<th>Q_max_PA1</th>
<th>Q_max_PA2</th>
<th>Q_max_PB</th>
<th>dI_PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_scaling_BT</td>
<td>93.5 %</td>
<td>98.8 %</td>
<td>98.8 %</td>
<td>21.4 %</td>
</tr>
<tr>
<td>Q_scaling_PA</td>
<td>3.2 %</td>
<td>2.4 %</td>
<td>65.9 %</td>
<td>13.5 %</td>
</tr>
<tr>
<td>F_scaling_PB</td>
<td></td>
<td></td>
<td></td>
<td>65.9 %</td>
</tr>
<tr>
<td>F_scaling_BT</td>
<td></td>
<td></td>
<td></td>
<td>17.4 %</td>
</tr>
<tr>
<td>F_scaling_AT</td>
<td></td>
<td></td>
<td></td>
<td>95.6 %</td>
</tr>
<tr>
<td>Q_scaling_AT</td>
<td></td>
<td></td>
<td></td>
<td>97.4 %</td>
</tr>
</tbody>
</table>

Parameter: Total
4.2 Simulation approach

- Geometrical input parameter set
- Not accurate enough
- System response (Q-I-curve)
- Input / output correlation (sensitivity)

MOP Interpolation (CFD-results)
Curve generation
Field generation
Optimization and reevaluation
4.3 CFD-simulation with optiSLang

- the potential analysis shows which port flow is important; now we need to find the geometrical parameters to achieve these changes
- the AT- improvement requires a design concept change → optiSLang is not used here
- for PA and PB parametric sensitivity analysis with CFD-simulations are performed
- PA: 80 design point per stroke; 560 in total
4.4 System simulation based on CFD-MOP

- MOP Interpolation (CFD-results)
- field generation
- MOP of system response
- re-evaluation and post processing

- curve generation
- system simulation (Q-I-curve)
- optimization based on MOP
due to the new concept, MOP-results show that flow rate is not an issue any more → added as constraint

→ focus on the curve shape / slope of the curve

geometrical parameters
4.5 Optimization based on MOP

- MOP optimization is very fast
- testing different settings / optimization criteria

Optimization criteria:
- reducing hysteresis by reducing the slope of the Q-I-curve
- reducing the gap between the peaks

Constraint:
- maximum flow rate
2. Level - Re-evaluation

- The results are presented in a 2D-pareto front (2 optimization criteria).
- The optimization results (pareto front) can be validated with the validator system from the wizard.
- The MOP pareto front shows a high quality for curves with lower slope.
- The recomputed results are less smooth.
- The re-evaluated results need to be re-evaluated because the system simulation fields are based on MOP.
2. Level - Re-evaluation

- the evaluation of the MOP based on CFD-results
- setting the geometrical parameters into the CFD system and rerun
- very small difference in flow rate, small difference in flow force

evaluation of MOP interpolation (CFD-results)
Summary

- optiSLang can be used for various tasks and simulation methods
 - example: 4/4-directional valve:
 - system simulation and optiSLang: analyse the potential of the product and define where to start
 - coupling optiSLang with CFX and AMESim to connect geometrical parameters with a dynamic system response
 - first testing results validates simulation method/results
 - next steps:
 - robustness analysis (RDO) based on manufacturing tolerances
Thank you for your attention.

» www.hilite.com
Simulation task and general approach

- Concept study:

 Concept 1: minimal changes in PA to reach the specification; reduce jet forces in PB and AT

 \rightarrow not possible

 Concept 2: changing the opening in PA to increase PA, which decreases PB; add an annular gap to PB to increase flow rate PB again

 \rightarrow additional critical control edge, Q-l-edge

 Concept 3: change the spool and block design, change the precontrol flow, change the PA opening, change the PB opening, change the AT flow

 \rightarrow new concept, many computations required, limited amount of time
4.3 CFD-simulation with optiSLang

- MOP are created for each position
 - *do not mix geometrical and operational parameters*

- **WHY?**
 - the behaviour of the operational parameters (stroke, current, pressure difference) are known and have a wider range here than the geometrical influences
 - leads to good high COP for the operational parameters and low COP for the geometrical parameters

It is also possible to create one MOP where the response is set for one specific stroke like, e.g., flow rate at 0.3 mm stroke.

Problem: for one input set all CFD-computations must be feasible and successful.
2. Level - Re-evaluation

- correlation between pareto front and geometrical parameters
- mark the optimal design
- look at the distribution of the important input parameters

- marked parameters are at range boundary
 → increasing the boundary as a possibility for next generation