Tobias Helle

Tolerance Optimization with CeTol 6σ and optiSLang
Phoenix Contact GmbH & Co. KG

• electr. Connectors- and electr. Interface Components
 industrial automation
• 15,000 Employees worldwide
 Phoenix Contact Group include
 15 Companies
• 14 Manufacturing locations worldwide

Phoenix Contact Headquarter

Location Berlin

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017
Content

1 – Target: Motivation

2 – Method: Tolerance Simulation; Kinematic Model

3 – Solution Approach: Process Integration optiSLang

4 – Example: Tolerance Optimization Relay

5 – Outlook: Next steps
1. Target: Motivation

Workflow Robust Design Optimization Relay Development – until now

3D CAD – Model

FEM-Simulation

Material data

Tolerance Simulation

Process data

Optimization

Robustness Reliability

safe, Failure

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017
1. Target: Motivation

Workflow Robust Design Optimization Relay Development – Target

3D CAD – Model

FEM-Simulation

Material data

Process data

Optimization

Robustness Reliability

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017
2. Method: Tolerance Simulation – Kinematic Model

3D CAD - Model

Kinematic model

Drawing

GD-Tolerances

Measurement

worst-case / statistical

Contribution

Sensitivity

Process data

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017

- **Parametrical System created by Wizard**

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017
3. Solution Approach: Process Integration CeToI with optiSLang

- **Parametrical System created by Wizard**
 Import parameter und tolerances from CeToI *.cxml-file by Input Node

Tobias Helle: Tolerance Analysis with CeToI and optiSLang – WOST 2017

- **Parametrical System created by Wizard**
- CeTol solver call

![Diagram of parametrical system with CeTol and optiSLang integration](image-url)

- **Parametrical System created by Wizard**
 Import results from CeTol result.xml-file by Output Node

- **Parametrical System created by Wizard**
 Parameter modification in parametric system possible

- **Parametrical System created by Wizard**

 Python-Node

![Diagram of parametrical system created by Wizard Python-Node](image)

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017

- Parametrical System created by Wizard Python-Node
4. Example: Tolerance Optimization Relay

- Optimization objectives 1: Contact Gap NO=0,25mm
4. Example: Tolerance Optimization Relay

- Optimization objectives 1: Contact Gap NO=0,25mm
4. Example: Tolerance Optimization Relay

Optimization objectives 2: Overtravel NO=0,25mm

Constraint:
Contact Gap NC > 0,2mm
4. Example: Tolerance Optimization Relay

- Results from Sensitivity Analysis

Sensitivity Analysis: CeToI vs. optiSLang

Optimization based on MoP
4. Example: Tolerance Optimization Relay

- **MoP from Sensitivity Analysis**
 CoP \approx 100%

Tobias Helle: Tolerance Analysis with CeTol and optiSLang – WOST 2017
4. Example: Tolerance Optimization Relay

Settings

- OT_obj: Objective
 - Expression: abs(State3.oSL_OT.MSMResults.Distribution.Mean-0.25)
 - Criterion: MIN
- KA_NO_obj: Objective
 - Expression: abs(State1.oSL_NO_Kontaktabstand.MSMResults.Distribution.Mean-0.25)
 - Criterion: MIN
- KA_NC_min: Constraint
 - Expression: State2.oSL_NC_Kontaktabstand.MSMResults.Distribution.Mean \(\geq \) 0.2
4. Example: Tolerance Optimization Relay

- **Serial Robust – Design Optimization**
4. Example: Tolerance Optimization Relay

- **Serial Robust – Design Optimization 2nd Iteration**

[Diagram showing Robustness_6 process involving inputs and outputs, with graphs illustrating output distributions.]
4. Example: Tolerance Optimization Relay

- Nested Robust Design Optimierung

- Evaluation of robustness of results in every optimization step
5. Outlook: Next steps

- Improvement of design process due to automated geometrical modelling
- Apply Excel-MOP of tolerance model for manufacturing
- Link between geometrical conditions of CeTol-Kinematic model and ANSYS FEM-Model (deformed springs)