Optimization of a spool-geometry for jet force compensation in a pressure control valve

C. Hugel (M. Eng.) | Hilite Germany GmbH | 28.06.2016
1. What is Hilite International GmbH?
2. What had to be solved?
3. Solving the problem with OptiSLang & ANSYS CFX
 1. Methods and tools
 2. Sensitivity and CoP
 3. Optimization (Calculation)
 4. Optimal geometry
4. Summary
What is Hilite International GmbH?

Everything important about us
Key facts about Hilite

- Foundation of Hilite (Heller Hydraulik) in 1930

- Products for the automotive industry divided into two fields:
 - Transmission (AT valves, DCT valves,…)
 - Unit Engine (VVT, engine valves,…)

- Approx. 1500 employees
Information
Hilite International GmbH

- Headquarters: Marktheidenfeld
- 8 Locations on 3 continents
What had to be solved?

Introduction to the product and its problem
Introduction – response time

Pressure control valve for DCT

- 3/2 proportional valve
- Regulation of the inflation of the clutch
- Low hysteresis and leakage
- Control pressure: 0 – 15bar
- Supply pressure up to 20bar
Introduction

Response time

Actuation of the clutch with pressure control valve

- **Response time**: Time between current rise (actuation) and achieving the target pressure (till 90% of target pressure)
- **Dead time**: Time between current rise (actuation and pressure rise (<10%))
- **Filling time**: Time between pressure rise and achieving 90% of the target pressure
Introduction
Results reference system

- max. step response at 20bar supply pressure of 420ms
- pressure dependence within a band of 250-300ms

→ Slow response times lead to cogging during gear change

→ Reduction of the step response by optimizing jet force
Solving the problem!

Optimization with OptiSLang and ANSYS CFX
Solving the problem
Methods and tools

- **CFD**: Computational Fluid Dynamics (simplified)
- Numerical approximation of fluid dynamic problem (Mainly used Navier-Stokes or Euler-equations)
- **Method**: Finite Volume
 -> Separate the area into discrete elements (mesh)
- Solve the model equations for every element over all surfaces

→ Simulation of the oil flow through the valve with ANSYS CFX
Solving the problem
Methods and tools

Parametric System
- Basic System to build sensitivity and optimization
- Connection with Workbench and ANSYS CFX

Sensitivity analysis
- Advanced Latin Hypercube Sampling (DoE) with 200 designs
- Analysis of the important parameters
- Start designs for optimization

Optimization
- Multidisciplinary optimization with two objectives
- Evolutionary algorithm with pareto ranking (start size 20, archive size 20, number of parents 10)
Solving the problem

Model information

- Edited CFD-Model to fit jet force calculation with optiSLang
- 7 adjustable spool geometry parameters (see figure)
- Different spool positions (moving the lower part of the model to the right, with A- and P-Port staying in place; figure orifice 0.1mm)

Density: 816.5 kg/m³
Viscosity: 0.0189 Pa s
Pressure: 20 bar
Solving the problem
Parameters, constraints and objectives

- Variation of all important geometry parameters within a defined range
- **Input** pressure 20bar at P-Port
- Different constraints to ensure correct geometries (not listed)
- Calculated spool positions (orifice at P-Port): 0.025mm, 0.05mm, 0.15mm, 0.40mm
- Objectives (optimization targets):
 1. **Reduction** of the spools jet force (Obj_ForceMIN)
 2. **Increase** of the valves flow rate (Obj_FlowMAX)

C. Hugel | Hilite Germany GmbH | 28.06.2016
Results - Sensitivity
CoP

Important for jet force and flow rate:
- AbstandSBS
- HoeheMittelsteg

Important for jet force
- VInnen
- Winkel_Innen

Important for flow rate
- PVer
- PWinkel
Results – Optimization

Calculation

Three designs with major reduction of jet force: #8, #43 and #48

- #08 lowest jet force
- #48 highest flow rate
- #43 lowest jet force at small orifice; good characteristics of the curve

Optimal design for the given requirements is #43
Results - Optimization

Geometry

Reference Design

A-Port

P-Port

Optimized Design

A-Port

P-Port

Ref. CAD

Opti.CAD
Results - Optimization
Changes of the spool

Jet Force reduction up to 50% & flow rate decrease of only 7%

Density: 816.5kg/m³; Viscosity: 0.0189Pa s; Pressure: 20bar; gap: 0.2mm
Results - Optimization

Jet force

- Detailed verification computation to show the behavior of the jet force vs. spool position (P-Port gap) for a pressure jump of 5bar, 10bar and 20bar
- Comparison of the optimized design and the reference design of the spool
- Reduction of the jet force of 50% around the peak value
- Shift of the maximum position to a smaller gap
Results - Optimization
Flow rate

- Detailed verification computation to show the behavior of the flow rate vs. spool position (P-Port gap) for a pressure jump of 5bar, 10bar and 20bar
- Comparison of the valve between the optimized and the reference spool
- No increase of the flow rate with a reduced jet force possible
- Low decrease of the flow rate (maximum at 7%) with a significant reduction of the jet force (50%)
Results - Optimization
Response time

p-t-curve without jet force compensated spool (reference)

Max. response time at 20bar (90% pressure target): 550 ms

p-t-curve with jet force compensated spool (optimized)

Max. response time at 20bar (90% pressure target): 170 ms
Results - Optimization

Step response

- max. step response at 20bar supply pressure of 280ms (reference 420ms)
- pressure dependence within a band of <200ms (reference 250-300ms)
Summary

- Using the given parameters, a reduction of the jet force at small gaps is very difficult
- Due to the optimized spool the maximum jet force decreased by 50%
- The critical peak of the jet force (reference design) was removed
- Reduction of the flow rate decreased by 7% at maximum gap
- Tests with the real optimized design show the improvement of the valve's response time
- No cogging during gear change with the optimized valve

⇒ Optimization target of a faster valve fulfilled
Danke für Ihre Aufmerksamkeit.

» www.hilite.com