Requirements and new approaches of probabilistic optimal design from a practical point of view considering steam turbines

K.Cremanns*, D. Roos*, R. Voß**
*Institute of Modelling and High-Performance Computing, Niederrhein University of Applied Sciences
**Siemens AG
1. Introduction
 • Motivation
 • Objective
 • Planned application

2. Previous results
 • Optimized latin hypercube sampling
 • Advanced moving least square approximation

3. Outlook
 • Integration into optiSLang
 • Further developments
1. **Introduction**
 - Motivation
 - Objective
 - Planned application

2. **Previous results**
 - Optimized latin hypercube sampling
 - Advanced moving least square approximation

3. **Outlook**
 - Integration into optiSLang
 - Further developments
1. Introduction - Motivation

Possible causes for improvements:

- Design with safety factors
- Deterministic design of application limits
- Selection of design parameters based on experience
- Extensive calculations in the adaptation development
- Faculty-specific calculation tools
- Network supply variations

K. Cremanns, D. Roos, R. Voß
1. Introduction - Objective

Input parameters: Thermodyn., Material, Geometry, Load collective

Design-sampling:

Faculty-specific metamodels:

Reliability-based multi-objective optimization: Optimal robust design taking into account the probability of failure
1. Introduction – Planned application

- **Operations**
 - Start-up time
 - Time for load changes
 - Allowable part-load operation

- **Blading**
 - Geometry of blade grooves and stress relief grooves

- **Thermodynamics**
 - Steam pressures
 - Steam temperatures
 - Axial thrust

- **Rotordynamics**
 - Eigenfrequency analysis (critical rotation speed, imbalances) depending on geometry of rotor

- **Mechanics**
 - Strength Design (Creeping)
 - LCF analysis
 - HCF analysis (bending stress)

- **Fracture mechanics**
 - Crack growth
1. Introduction – Planned application

„External“ constraints:
• Steam temperature (THD)
• Start times
• Required lifetime
• Number of starts
• Number of load cycles
• …

„Internal“ constraints:
• Fulfillment mechanical integrity rotor + blading
• Manufacturability
• Compliance criteria rotor dynamics
• …

Objectives:
• Long lifetime (h)
 ➢ High number of starts (N)
 ➢ High start speed (MW / min)
 ➢ High number of load cycles (N)
• High performance (MW)
• High efficiency (mu)
• Eigenfrequencies outside critical regions (50Hz, 60 Hz, 100Hz, 120Hz)
•

\[D = D_f + D_c < 1 \]
Outline

1. Introduction
 • Motivation
 • Objective
 • Planned application

2. Previous results
 • Optimized latin hypercube sampling
 • Advanced moving least square approximation

3. Outlook
 • Integration into optiSLang
 • Further developments
2. Previous results - Optimized latin hypercube sampling

Base: **standard latin hypercube sampling**
- Parameter space is divided into N (samples or classes) with the same probability of 1 / N, and in each of these classes a random point is selected.

Advantages:
- Low computation time to generate.
- It has a lower variance compared to standard Monte Carlo sampling.
- The value range of each variable is covered.
- Non – collapsing.

Cons:
- It can cause unwanted input parameter correlations.
- It does not guarantee a "filling" coverage of the parameter space.
2. Previous results - Optimized latin hypercube sampling

Optimized latin hypercube sampling (OHLS):
• The standard latin hypercube sampling gets improved by optimization.

• Optimization criteria are:
 ➢ Mean value of the linear correlation coefficients ρ_{ij} (modified criterion of Owen [1]):
 \[\rho_{avg} = \frac{\sum_{i=2}^{n} \sum_{j=1}^{i-1} |\rho_{ij}|}{n(n-1)/2}; 0 \leq \rho_{avg} \leq 1 \]
 ➢ Euclidean Maximin [2][3] design coefficient (scaled to [0,1]):
 \[l_2 = d(x_i, x_j) = \min - \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}; 0 \leq l_2 \leq 1 \]

• Overall criterion: \[f(\rho_{avg}, l_2) = w_1 \rho_{avg} + w_2 l_2 = \Psi \quad \text{; with} \quad w_1 + w_2 = 1; w_1 = 0.5, w_2 = 0.5 \]

• Optimization method: **Simulated Annealing (SA)** [4]
2. Previous results - Optimized latin hypercube sampling

Comparison for N=50 n=2:

Standard LHS

\[\psi = -0.0117 \]

Own OLHS

\[\psi = -0.0394 \]

after optimization
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab lhsdesign N=100 n=10: criterion maximin

Matlab lhsdesign criterion: maximin
1.000.000 iterations

Own OLHS 10.000 iterations

\[l_2 = 0.191 \]

\[l_2 = 0.212 \]

scaled minimal distance between design points
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab lhsdesign N=100 n=10: criterion: orthogonality

Matlab lhsdesign criterion: orthogonality
1.000.000 iterations

Own OLHS 10.000 iterations

\[
\rho_{avg} = 0.692E - 2
\]

\[
\rho_{avg} = 0.694E - 3
\]
2. Previous results - Optimized latin hypercube sampling

Comparison for optiSLang $N=100 \ n=10$: Advanced latin hypercube sampling (ALHS)

optiSLang ALHS (optimized correlation)

Own OLHS 10,000 iterations

$||x||_2 = 0.152$

$||x||_2 = 0.212$
Comparison for optiSLang $N=100 \ n=10$: Advanced latin hyper cube sampling (ALHS)

optiSLang ALHS (optimized correlation)

$$\rho_{avg} = 0.72 \times 10^{-2}$$

Own OLHS 10,000 iterations

$$\rho_{avg} = 0.694 \times 10^{-3}$$
2. Previous results - Optimized latin hypercube sampling

Uniformity

Own OLHS 10,000 iterations

X1

X2
2. Previous results - Optimized latin hypercube sampling

• **Sequentiell OLHS (SOLHS):**
 - Start with a OLHS with presented method with e.g. 2 samples.
 - Add sample points in that way, that each step the number of samples double (necessary to keep **uniformity**).
 - The new points are also optimized with a combination of random picks and SA regarding ψ of the whole new design matrix (existing points + additional points).
 - Continue until metamodel is convergent (further steps are adding 4, 8, 16… samples).

• Advantages:
 - This method can result in a lower number of needed calculated samples, but still in a oversampling, because the fixed number of additional sets.
 - Over the iterations it’s possible to check the convergence of the metamodel.
 - Every new created LHS is still a OLHS, with optimal settings for maximin and correlation.
2. Previous results - Optimized latin hypercube sampling

- Example for 64 samples with SOLHS (steps: adding 2, 4, 8, 16, 32 samples)
Comparison for Matlab N=64 n=2: maximin and SOHLS 64 samples

Matlab OLHS criterion: maximin
100,000 iterations

\[l_2 = 0.035 \]

Own SOLHS 10,000 iterations

\[l_2 = 0.041 \]
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab N=64 n=2: orthogonality and layer 64 samples

Matlab OLHS criterion: orthogonality MCS (100.000) Iterations

\[\rho_{avg} = 0.3 \times 10^{-2} \]

Own OLHS 10.000 iterations layer 64 samples

\[\rho_{avg} = 0.12 \times 10^{-2} \]
2. Previous results - Optimized latin hypercube sampling

Own SOLHS (10,000 Iterations)
64 samples uniformity check
2. Previous results - Advanced moving least square approximation

Standard moving least square approximation (MLS) [6]:

\[
\tilde{y}(x) = p^T(x)a(x)
\]

; Approximation of the results of the test points

\[
p(x) = [1, x_1, x_2, ..., x_n, x_1^2, x_2^2, ..., x_n^2, x_1x_2, ...x_nx_m]^T
\]

; Polynomial basisfunction

\[
a(x) = (P^T W(x) P)^{-1} P^T W(x) y(x)
\]

; Moving coefficients depending on testpoint \(x \)

\[
P = [p^T(x_0)p^T(x_1)...p^T(x_N)]]
\]

; Contains all polynomial basisfunction of the supportpoints

\[
y(x) = [y(x_0)y(x_1)...y(x_N)]
\]

; Contains the results of the objective function for all support points

\[
W(x) = diag[w_1(x - x_1)w_2(x - x_2)...w_N(x - x_N)]
\]

; Overall weighting matrix (diagonal matrix) contains for each testpoint a separate weighting

\[
w_N(\|x - x_N\|) = \begin{cases}
 e^{-\left(\frac{\|x - x_N\|}{D}\right)^2} & \|x - x_N\| \leq D \\
 0 & \|x - x_N\| > D
\end{cases}
\]

; Gaussian weighting function

\[
\alpha = \frac{1}{\sqrt{-\log_{10}(0.001)}}
\]

; Constant

\[
D = \text{ Self- selected parameter affecting model accuracy}
\]
2. Previous results - Advanced moving least square approximation

Advanced moving least square approximation (AMLS):

• A new concept of weighting, which not only includes a weighting for each test point, but also per variable. This means there exist not only one weighting matrix and D for the whole approximation but a weighting matrix and D per variable and if present for the crossterms.

• The D’s are chosen through optimization with a particle swarm optimization algorithm.

• The optimization objective is the generalized coefficient of determination:

\[R^2 = \left(\frac{\sum_{k=1}^{N} (y^k - \mu_y)(\hat{y}^k - \mu_{\hat{y}})}{(N-1)\sigma_y \sigma_{\hat{y}}} \right)^2 ; 0 \leq R^2 \leq 1 \]

• Whereby the sample points are divided in equal subsets (0.2*N), so that every sample point is support- and testpoint, then the average \(R^2 \) is calculated (cross validation).

• \(\alpha \) is not longer a constant, but a further optimization variable, in order to better fit the problem, rather than to change the weighting function. Therefore is also used a new formulation of the Gaussian weighting function:

\[w_N(\|x-x_N\|) = \begin{cases}
\frac{e^{-\alpha (x-x_N/\sigma)^2} - e^{-\alpha^2}}{(1-e^{-\alpha^2})} & \text{for } \|x-x_N\| \leq \sigma \\
0, & \text{otherwise}
\end{cases} \]
2. Previous results - Advanced moving least square approximation

\[w_N(\|x - x_N\|) = \begin{cases} e^{-\alpha^2} - e^{-\alpha^2} \\ 0, \end{cases} \]

\[w_N(\|x - x_N\|) = \begin{cases} e^{-(\frac{\|x - x_N\|}{D\alpha})^2} \\ 0 \end{cases} \]

Shape of the Gaussian weight functions with different control parameter \(\alpha \) with \(R = \|x - x_N\| / D \).
2. Previous results - Advanced moving least square approximation

Benchmark of the AMLS:

- Used Metamodels [9]: MLS (D is through optimization), AMLS, super vector machine [10], Gaussian-process-regression [11], optiSLang MLS (gaussian weighting function, same D like MLS, all parameters have a quadratic basis polynom)

- Evaluation criterion: \[RMSE = \sqrt{\frac{1}{N_{test}} \sum_{k=1}^{N_{test}} (y(x_k) - \hat{y}_e(x_k))^2} \]

- \(N_{Support} = 120; \ N_{test} = 500; \ n = 2 - 4 \) (testpoints are not used, to create the metamodel)

- Testfunctions:
 - Rosenbrock: \(y = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2; -2 \leq x_i \leq 2 \)
 - Normal PDF shape: \(y = \frac{1}{1+x_1^4+5x_2^4+2x_2^2}; -3 \leq x_i \leq 3 \)
 - Sixhump Camelback: \(y = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4; -2 \leq x_i \leq 2 \)
 - Own testfunction 1 \(y = x_1^2 + x_2^2 + sin(x_3) + cos(x_4) + x_3^3; -5 \leq x_i \leq 5 \)
 - Own testfunction 2 \(y = x_1 + x_1^2x_2 + sin(x_3)^2 + cos(x_4x_2) + x_3^3x_1; -5 \leq x_i \leq 5 \)
2. Previous results - Advanced moving least square approximation

Rosenbrock: \[y = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2; -2 \leq x_i \leq 2 \]

- 45% compared to standard MLS
2. Previous results - Advanced moving least square approximation

Rosenbrock: \[y = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2; \quad -2 \leq x_i \leq 2 \]
2. Previous results - Advanced moving least square approximation

Rosenbrock: \[y = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2; \quad -2 \leq x_i \leq 2 \]

Rosenbrock response surface for \(x_1 \)

- Red = Approximation
- Green = Calculation

MLS approximation of Output
Normal PDF shape: \(y = \frac{1}{1+x_1^4+5x_2^4+2x_2^2}; -3 \leq x_i \leq 3 \)
2. Previous results - Advanced moving least square approximation

Normal PDF shape: \[y = \frac{1}{1 + x_1^4 + 5x_2^4 + 2x_2^2}; -3 \leq x_i \leq 3 \]

Response surface AMLS

Response surface osl_MLS
Sixhump Camelback: \[y = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4; -2 \leq x_i \leq 2 \]

- 43.9% compared to standard MLS
2. Previous results - Advanced moving least square approximation

Sixhump Camelback: $y = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4; \quad -2 \leq x_i \leq 2$

Response surface AMLS

Response surface osl_MLS

MLS approximation of Output
2. Previous results - Advanced moving least square approximation

Sixhump Camelback: \[y = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4; \quad -2 \leq x_i \leq 2 \]

Camelback response surface for \(x_2 \)

red = Approximation

green = Calculation

MLS approximation of Output
2. Previous results - Advanced moving least square approximation

Own testfunction 1: \(y = x_1^2 + x_2^2 + \sin(x_3) + \cos(x_4) + x_5^3; -5 \leq x_i \leq 5 \)

- 40.3% compared to standard MLS

RMSE

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMLS</td>
<td>13.08</td>
</tr>
<tr>
<td>osl_MLS</td>
<td>15.32</td>
</tr>
<tr>
<td>MLS</td>
<td>18.34</td>
</tr>
<tr>
<td>SVM</td>
<td>19.21</td>
</tr>
<tr>
<td>Gaussian Process</td>
<td>13.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x5</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-150</td>
<td>-100</td>
<td>-50</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

07.11.2014 WOST 2014
K. Cremanns, D. Roos, R. Voß
2. Previous results - Advanced moving least square approximation

Own testfunction 1: \[y = x_1^2 + x_2^2 + \sin(x_3) + \cos(x_4) + x_5^3; \ -5 \leq x_i \leq 5 \]

Approximations points AMLS

Approximations points osl_MLS (\(x_1, x_3, x_4\) constant)
2. Previous results - Advanced moving least square approximation

Own testfunction 1: \(y = x_1^2 + x_2^2 + \sin(x_3) + \cos(x_4) + x_5^3; -5 \leq x_i \leq 5 \)

Own testfunction 1 response surface for x5

red = Approximation
green = Calculation
2. Previous results - Advanced moving least square approximation

Own test function 2: \[y = x_1 + x_1^2 x_2^2 + \sin(x_3)^2 + \cos(x_4 x_2) + x_3^2 x_1; -5 \leq x_i \leq 5 \]

- 10.63% compared to standard MLS

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMLS</td>
<td>79.44</td>
</tr>
<tr>
<td>osl. MLS</td>
<td>70.12</td>
</tr>
<tr>
<td>MLS</td>
<td>87.89</td>
</tr>
<tr>
<td>SVM</td>
<td>153</td>
</tr>
<tr>
<td>Gaussian Process</td>
<td>81.94</td>
</tr>
</tbody>
</table>
2. Previous results - Advanced moving least square approximation

Own testfunction 2: \[y = x_1 + x_1^2 x_2^2 + \sin(x_3)^2 + \cos(x_4 x_2) + x_3^2 x_1; -5 \leq x_i \leq 5 \]

Response surface AMLS

Response surface osl_MLS (\(x_3, x_4, x_2\) constant)
Conclusion:

• For problems without variables, which need to be filtered / constant, the AMLS showed better results as optiSLangs MoP with Gaussian Weighting and optimized $D = MLS$.
• For Problems with more than 2 variables, it occurs a advantage through filtered or constant parameters.
• The AMLS is for every testfunction better than the standard MLS with optimized D.

Plans:

• Our objective is to use metamodells for robust design optimization, therefore very accurate metamodels are necessary.
• It is planned to use optiSLangs variable reduction methods in combination with our metamodells to further improve the metamodels.
1. Introduction
 • Motivation
 • Objective
 • Planned application

2. Previous results
 • Optimized latin hypercube sampling
 • Advanced moving least square approximation

3. Outlook
 • Integration into optiSLang
 • Further developments
3. Outlook - Integration into optiSLang

- Own developments in python can easily be integrated into optiSLang v 4.

Advantages:

- Usage of existing methods / post-processing and great process integration possibilities for other softwares, like ANSYS, ABAQUS, Excel.
- Extract data of different kinds of formats to work together. (ETK)
- No need to programm interfaces.
- Variables in Python can be declared as parameters for optiSLang -> a lot of opportunities to work with own developments and methods / post-processing of optiSLang.

```python
# Übergabe OptiLang
Xbest=np.transpose(Xbest)
parameter_names = ['x1', 'x2', 'x3', 'x4']
designs = ...... Xbest.tolist()

# convert py-List to PyOSDesignContainer
out_designs = PyOSDesignContainer()
for i in range(0, len(designs)):
    design = PyOSSDesign()
    designpoint = PyOSSDesignPoint()
    counter = 0
    for j in designs[i]:
        designpoint.add(parameter_names[counter], j)
        counter += 1
    design.SetParameters(designpoint)
    out_designs.push_back(design)
```

![Diagram of integration process](image.png)
3. Outlook - Further developments

Development of:

- AMLS (tests of different optimization algorithms for a high number of variables).

- Changing polynom coefficients regarding the variables (thanks to T. Most).

- Combination of sampling and estimation of the prognosis quality of the metamodell -> convergence analysis of the prognosis quality to sample the minimum number of designs.

- Chance-constraints stochastic multiobjective optimization on metamodels (optimization taking into account the probability of failure of the constraints).

- Simulation model for the different fractions of the hp/ip rotor development.

[8] www.quantcom.de/diemorphogenetischefelder.html
1. Introduction - Objective

The advantages:

• Failure probabilities instead of safety factors

• Better understanding of parameters through sensitivity analysis

• Increased flexibility to perform changes within the parameter space

• The possibility to use extended application limits in contrast to the deterministic design

• Avoid interface conflicts and no need for expert knowledge in all areas / tools

• Optimal compromise solutions for the requirements
Simulated Annealing (SA):

- Start is a random LHS with a design matrix D, where each column stands for a design point.

- By interchanging p ($p < n$) elements of two randomly selected columns -> D_{try} is a new design matrix.

- If $\psi(D_{try})$ is better than $\psi(D)$ D gets D_{try}. If $\psi(D_{try})$ is worse than $\psi(D)$ a random decision is made, if still D gets D_{try} or whether D_{try} is discarded. That D gets D_{try} will happen with the probability:

 $\pi = \exp(-[\psi(D_{try}) - \psi(D)]/t)$, $t=$self-selected parameter.

- This random decision prevents that only a local minimum is found.
2. Previous results - Optimized latin hypercube sampling

- The result of the optimization is D_{best}.

- Start design matrix D is the best sampling regarding the overall criterion ψ out of 500 generated standard latin hypercube samplings.

(source: [5])
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab N=32 n=2: maximin and SOHLS 32 samples

Matlab OLHS criterion: maximin
100,000 iterations

\[l_2 = 0.064 \]

Own SOLHS 10,000 iterations

\[l_2 = 0.065 \]
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab N=16 n=2: maximin and SOHLS 16 samples

Matlab OLHS criterion: maximin
100.000 iterations

Own SOLHS 10.000 iterations

\[l_2 = 0.130 \]

\[l_2 = 0.133 \]
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab N=16 n=2: orthogonality and layer 16 samples

Matlab OLHS criterion: orthogonality
100,000 iterations

Own SOLHS 10,000 iterations

\[\rho_{avg} = 0.0283 \]

\[\rho_{avg} = 0.58 \times 10^{-2} \]
2. Previous results - Optimized latin hypercube sampling

Own SOLHS 10,000 iterations
16 samples uniformity check
2. Previous results - Optimized latin hypercube sampling

Comparison for Matlab N=32 n=2: orthogonality and layer 32 samples

Matlab OLHS criterion: orthogonality
100,000 iterations

\[\rho_{avg} = 0.0315 \]

Own SOLHS 10,000 iterations

\[\rho_{avg} = 0.6 \times 10^{-3} \]
2. Previous results - Optimized latin hypercube sampling

Own SOLHS (10,000 Iterations)
32 samples uniformity check
Particle Swarm algorithm [7]:

- An initial population ("swarm") of possible candidates ("particle") move through the parameter space.
- The direction of the "particle" is guided by the knowledge of its best position (local optimum), and the best known position of the "swarm leader" (global optimum).
- If new better positions are discovered, they are used to steer the "swarm".
- This process is repeated a certain number of iterations until an optimal solution is found.

Advantages:

- Suitable for multiobjective optimization.
- High number of input variables possible.

Disadvantage:

- Suitable coefficients for the "swarm" to determine behavior (8 coefficients).
2. Previous results - Advanced moving least square approximation

Rosenbrock: \[y = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2; -2 \leq x_i \leq 2 \]
2. Previous results - Advanced moving least square approximation

Own testfunction 1: \[y = x_1^2 + x_2^2 + \sin(x_3) + \cos(x_4) + x_5^3; -5 \leq x_i \leq 5 \]
Sixhump Camelback: \(y = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4; -2 \leq x_i \leq 2 \)