Design and Optimization of Turbo Charger Turbine Maps by Meta-Model of optimal Prognosis

Johannes Einzinger
ANSYS Germany
Turbo Charger, Basics
Turbo Charger, Thermodynamics

Compressor: \(P_V = \frac{1}{\eta_V} \cdot m_V \cdot \Delta h_{is} \)

Turbine: \(P_T = \eta_T \cdot m_T \cdot \Delta h_{is} \)

\[
\Rightarrow \left(\frac{p_2}{p_1} \right) \frac{K_V^{-1}}{K_V} = 1 + \frac{m_T}{m_V} \cdot \frac{c_{p3}T_3}{c_{p1}T_1} \cdot \eta_V \cdot \eta_T \cdot \left[1 - \left(\frac{p_4}{p_3} \right) \frac{K_T^{-1}}{K_T} \right]
\]
Turbo Charger, Matching

\[
\left(\frac{p_2}{p_1} \right)^{\frac{K_v - 1}{K_v}} = 1 + \frac{m_T}{m_v} \cdot \frac{c_{p_3} T_3}{c_{p_1} T_1} \cdot \eta_v \cdot \eta_T \cdot \left[1 - \left(\frac{p_4}{p_3} \right)^{\frac{K_v - 1}{K_v}} \right]
\]

- Compressor Map must fit Engine Characteristic
 \(\rightarrow m_v, \eta_v, n, \Pi_v \)
- Matching \(\rightarrow \Pi_T \) wrt \(C \)
- Turbine Map \(\rightarrow m_T, \eta_T \)
- Check / Iterate \(C \)
- Does Mass Flow match?
Matching by Turbine Meta-Model

\[
\left(\frac{p_2}{p_1} \right)^{\frac{\kappa_v - 1}{\kappa_v}} = 1 + \frac{m_T}{m_v} \cdot \frac{c_{p_3} T_3}{c_{p_1} T_1} \cdot \eta_v \cdot \eta_T \cdot \left[1 - \left(\frac{p_4}{p_3} \right)^{\frac{\kappa_r - 1}{\kappa_r}} \right]
\]

- Compressor Map must fit Engine Characteristic
 \[m_V, \eta_V, n_V, \Pi_V\]
- Turbine Map as MoP
- Required \[m_T, \eta_T\]
- Matching \[\Pi_T\] wrt C
- \(\rightarrow\) Optimal Turbine Map
• PRIMARY DESIGN
• GEOMETRY
• CFD-SIMULATION
• META-MODEL
PRIMARY DESIGN
GEOMETRY
CFD-SIMULATION
META-MODEL
Turbine Design

\[d_s = d \cdot \frac{Q^{0.5}}{\Delta h_{is}^{0.75}} \]

\[n_s = n \cdot \frac{Q^{0.5}}{\Delta h_{is}^{0.75}} \]

Considered Region

\[c_u \]

\[c_m \]

\[u \]

\[n_s = 0.5 \]

\[n_s = 0.7 \]

\[n_s = 0.9 \]
Meridian Plane

Defined Parameters:

Rotational Speed: \(\Omega \)

Pressure Ratio: \(\frac{p_{t3}}{p_4} \rightarrow \Delta h_{is} \rightarrow c_{is} \)

Velocity Ratio: \(\frac{u_3}{c_{is}} \rightarrow u_3 \rightarrow r_3 \)

Velocity Ratio: \(\frac{c_{m4}}{u_3} \rightarrow c_{m4} \)

Specific Speed: \(n_s = n \cdot \frac{Q^{0.5}}{\Delta h_{is}^{0.75}} \rightarrow r_{4s} \rightarrow \dot{m} \)

Radius Ratio: \(\frac{r_{4h}}{r_{4s}} \rightarrow r_{4h} \cdot u_{4h} \cdot u_{4s} \)

Loss Coefficient: \(\Delta h_{V} = 0.5 \cdot \zeta \cdot c_{m4}^2 \)

Height: \(\dot{m} = 2 \cdot \pi \cdot r \cdot b \cdot \rho \cdot c_{m3} \)

Entropy Gain: \(\Delta s = c_p \cdot \ln \left(\frac{T_4}{T_3} \right) - R \cdot \ln \left(\frac{p_4}{p_3} \right) \)
Blade to Blade

Absolute Velocity c ↓

Relative Velocity w ↑

$\beta_B = f(m)$

Euler Equation

$\Delta h_t = \Delta (u \cdot c_u)$

Total Enthalpy stn Frame

$h_t = h + 0.5 \cdot c^2$

Total Enthalpy rel Frame

$h'_t = h + 0.5 \cdot w^2$

Inlet:

$\alpha_3, u_3, \beta_3 \approx \beta_{B3} \rightarrow c_3, w_3$

Outlet:

$\alpha_4 = 0, c_{m4}, u_4 \rightarrow c_4, w_4, \beta_4$
Design Parameters

Output Parameter

Output Parameter will be compared with CFD Result → Correlation

Input Parameter

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Value</th>
<th>Ref. Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LossCoefficientW</td>
<td>4.0</td>
<td>4.0</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>NumberBlades</td>
<td>7.0</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>RatioR3H_R3S</td>
<td>0.3</td>
<td>0.3</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>SpecificSpeed</td>
<td>0.7</td>
<td>0.7</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>RatioU2_CIS</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>RatioCM3_U2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>OutletPressure</td>
<td>200000.0</td>
<td>200000.0</td>
<td>100000.0</td>
<td>250000.0</td>
</tr>
<tr>
<td>8</td>
<td>Beta2</td>
<td>0.0</td>
<td>0.0</td>
<td>-30.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Alpha2</td>
<td>65.0</td>
<td>65.0</td>
<td>45.0</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Constants

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Value</th>
<th>Ref. Value</th>
<th>Value</th>
<th>Ref. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>InletTotalTemperature</td>
<td>1000.0</td>
<td>1000.0</td>
<td>900.0</td>
<td>1100.0</td>
</tr>
<tr>
<td>26</td>
<td>InletTotalPressure</td>
<td>400000.0</td>
<td>400000.0</td>
<td>360000.0</td>
<td>440000.0</td>
</tr>
<tr>
<td>27</td>
<td>GasConstantR</td>
<td>287.0</td>
<td>287.0</td>
<td>258.3</td>
<td>315.700000000000005</td>
</tr>
<tr>
<td>28</td>
<td>SpecificHeatCP</td>
<td>1004.0</td>
<td>1004.0</td>
<td>903.6</td>
<td>1104.4</td>
</tr>
<tr>
<td>29</td>
<td>RotVelocity</td>
<td>50000.0</td>
<td>50000.0</td>
<td>45000.0</td>
<td>55000.0</td>
</tr>
</tbody>
</table>
• PRIMARY DESIGN
• GEOMETRY
• CFD-SIMULATION
• META-MODEL
BladeModeler

- Mean Line Design tool
 - Preliminary blade design
- Generation of 3D CAD
- Auto creation of
 - One or all blades
 - Hub & shroud solid
 - Fillets, …
 - Periodic fluid volumes for CFD analysis
 - Named selections
- Parametric CAD modifications
Meridian Plane

Hub/Shroud Spline with 5 Control-Points, Dimensions relative to first and last

Length Scale:

\[r_0 = \frac{\sqrt{\kappa \cdot R \cdot T_{t3}}}{\Omega} \]
Blade design on 2 layers, Hub and Shroud
Bezier curve with 4 Control Points
Design Parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Value</th>
<th>Ref.Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LossCoefficientW</td>
<td>4.0</td>
<td>4.0</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>NumberBlades</td>
<td>7.0</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>RatioR3H_R3S</td>
<td>0.3</td>
<td>0.3</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>SpecificSpeed</td>
<td>0.7</td>
<td>0.7</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>RatioU2_CIS</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>RatioCM3_U2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>OutletPressure</td>
<td>200000.0</td>
<td>200000.0</td>
<td>100000.0</td>
<td>250000.0</td>
</tr>
<tr>
<td>8</td>
<td>BetaB2</td>
<td>0.0</td>
<td>0.0</td>
<td>-30.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Alpha2</td>
<td>65.0</td>
<td>65.0</td>
<td>45.0</td>
<td>75.0</td>
</tr>
<tr>
<td>10</td>
<td>BM_HubZ3_Rel</td>
<td>0.4</td>
<td>0.4</td>
<td>0.325</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>BM_ShdiZ3_Rel</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>12</td>
<td>BM_ShdiR2_Rel</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>13</td>
<td>BM_HubR2_Rel</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>BM_HubR3_Rel</td>
<td>0.05</td>
<td>0.05</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>BM_ShdiR3_Rel</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>16</td>
<td>BM_HubZ4_Rel</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>17</td>
<td>BM_ShdiR4_Rel</td>
<td>0.4</td>
<td>0.4</td>
<td>0.35</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>BM_ShdiZ4_Rel</td>
<td>0.55</td>
<td>0.55</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td>19</td>
<td>BM_L2_Rel</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>BM_HubBeta2_Rel</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>21</td>
<td>BM_HubBeta3_Rel</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>22</td>
<td>BM_ShdiBeta2_Rel</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>23</td>
<td>BM_ShdiBeta3_Rel</td>
<td>0.3</td>
<td>0.3</td>
<td>0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>24</td>
<td>BM_HubBeta4_Inc</td>
<td>10.0</td>
<td>10.0</td>
<td>0.0</td>
<td>15.0</td>
</tr>
<tr>
<td>25</td>
<td>InletTotalTemperature</td>
<td>1000.0</td>
<td>1000.0</td>
<td>900.0</td>
<td>1100.0</td>
</tr>
<tr>
<td>26</td>
<td>InletTotalPressure</td>
<td>400000.0</td>
<td>400000.0</td>
<td>360000.0</td>
<td>440000.00000000006</td>
</tr>
<tr>
<td>27</td>
<td>GasConstantR</td>
<td>287.0</td>
<td>287.0</td>
<td>258.3</td>
<td>315.700000000000005</td>
</tr>
<tr>
<td>28</td>
<td>SpecificHeatCP</td>
<td>1004.0</td>
<td>1004.0</td>
<td>903.6</td>
<td>1104.4</td>
</tr>
<tr>
<td>29</td>
<td>RotVelocity</td>
<td>50000.0</td>
<td>50000.0</td>
<td>45000.0</td>
<td>55000.000000000001</td>
</tr>
</tbody>
</table>
• PRIMARY DESIGN
• GEOMETRY
• CFD-SIMULATION
• META-MODEL
TurboGrid

- Automated mesh generation for bladed turbo machinery components
- High quality hexahedral grids
- Repeatable
 - Minimize mesh influence in design comparison
- Scalable
 - Maintain quality with mesh refinement
CFX

- Fast & scalable solver
- Low speed to supersonic
- Steady/transient
- Turbulence & heat transfer

- Multiple Frame of Reference
- Multi-phase flow
- Real fluids
- Fluid/structure interaction
Set-Up & Boundary Conditions

- **Fluid ideal Gas**
- **Turbulence Model SST**
- **Total Pressure and Temperature @ Inlet**
- **Static Pressure @ Outlet**
- **Relative Frame of Reference**
Solver Run

RMS-Residuals
Mass Conservation
Momentum
Energy

Imbalances
Mass Conservation
Momentum
Energy

Monitor Points
Efficiency
Variable Ratios
Pressure, Temperature…

Monotonic Convergence
Limit 10^{-5}
Iteration 82

+2%
Imbalance ~0%
Limit 0.1%

-2%
Constant Values
Iteration 40
CFX-Post / Turbo-Post

- Turbo post-processing
 - Turbo plots
 - Blade-to-blade
 - Meridional
 - Turbo charts
 - Blade loading
 - Hub to shroud
 - Turbo report templates
 - 1 component → multi-stage
• PRIMARY DESIGN
• GEOMETRY
• CFD-SIMULATION
• META-MODEL
Design of Experiments
Licensing, HPC & Parametric Packs

- A lot of calculations!
- How can these calculations be done in a quick way?

![Diagram showing series of design points and solver keys with and without HPC packs.]

- 94% reduced time to innovation

![Diagram with x-axis: Simultaneous Design Points, Y-axis: Time, Z-axis: Parallel Solve, showing 3 sets of solver keys with and without HPC packs.]

+ 1 HPC Pack
Meta-Model of Optimal Prognosis

Correlation Filter
Importance Filter
Test-Point & Data Split
Response Surface
Coefficient of Prognosis

![Diagram showing basic points, test points, linear, quadratic regression, moving least square, and variation of filter limits.]

\[CoP = \left(\frac{E(Y \cdot \hat{Y})}{\sigma_Y \cdot \sigma_{\hat{Y}}} \right)^2 = \left(\frac{\sum_{k=1}^{N} (y^{(k)} - \mu_y) \cdot (\hat{y}^{(k)} - \mu_{\hat{Y}})}{(N - 1) \cdot \sigma_Y \cdot \sigma_{\hat{Y}}} \right)^2 \]
Best Practice CoP

- CoP is increasing with Number of Samples: 100% or to a Limit → ”Noise”
- The higher the Dimension of MoP the more Samples are required
- The more non-linear MoP is, the more Samples are required
- MoP wrt to Lower/Upper Limit of Parameters
Trouble Shooting for small CoP

- Number of Evaluated Designs?
 - Check CoP(80)~CoP(150)
- Numerical Error?
 - Best-Practice!
- Model Error?
 - Turbulence Model
 - Steady vs. transient
 - Hot vs. cold Geometry
 - ...
- Multiple-Mechanisms
 - Use alternative Output
Characteristic Data: Mass Flow Rate

1. High CoP 93%
2. Important Parameters
3. Plausible MoP

\[n_s = \text{const} \Rightarrow m = f(p_{\text{out}}) \]
Characteristic Data: Efficiency

Medium CoP 61% / 66%

Full Data Set

Reduced, no Outliners
Alternative for Efficiency

• Definition of Efficiency:
 – CoP=66%
 \[
 \eta_{pl} = \frac{\kappa}{\kappa - 1} \cdot \frac{\ln(T_{t4}/T_{t3})}{\ln(p_{4}/p_{t3})}
 \]

• Entropy
 – CoP=89%
 \[
 \Delta s = c_p \cdot \ln \left(\frac{T_4}{T_3} \right) - R \cdot \ln \left(\frac{p_4}{p_3} \right)
 \]

• Total Temperature
 – CoP=93%
Correlation: Mass Flow Rate

- Real Mass Flow Rate is smaller than predicted due to blockage
- MoP can be used for blockage correlation
- Mass Flow Rate depends on
 - Specific Speed
 - Outlet Pressure
 - Blade Inlet Angle
Correlation: Efficiency

Efficiency prediction due to dynamic loss is not sufficient

\[\Delta h_v = 0.5 \cdot \zeta \cdot c_m^2 \]

MoP for Entropy Gain can be used as prediction for Design Procedure
Summary & Outlook

- **Summary**
 - Turbine Map as Meta-Model $m, \eta = f(p, \text{Geometry})$
 - Design Correlations can be derived from Meta-Model
 - Primary Design by Meta-Model \rightarrow turboSLang

- **Outlook**
 - Quality might be improved by
 - Finer Mesh to reduce numerical noise
 - More Design Points in Meta-Model
 - Better Lower/Upper Bounds for Parameter
 - Turbine Map as Meta-Model $m, \eta = f(p, \Omega, \text{Geometry})$
 - Compressor Map as Meta-Model