Robust Design Optimization of Electromagnetic Actuator Systems Using Heterogeneous Models

Holger Neubert, Roman Goldberg, Alfred Kamusella

11.2011
Outline

1. Introduction
2. System Models
3. Examples
4. Challenges in Design Optimization
1. Introduction

Electromagnetic Actuators

- Fast actuation, medium forces and strokes
- High energy density
- Design varies in a very wide range
Electromagnetic Actuator Systems

- Reluctances forces
- Electrodynamical forces
- Solid state actuators
2. Models

Electrical Circuit
- Kirchhoffian network models
- Network equations, element relations

Electromagnetic transducer
- Maxwell’s and material equations
- Generalized Kirchhoffian network models
- Static (and dynamic) finite-element-models

Gear and load
- Kinematic and dynamic models, rigid body mechanics
- Equation of motion, element relations
System model characteristics of electromagnetic actuators

- **Multiphysics models** including electrical, magnetic, mechanical, thermal and other domains
- **Non-linear effects** in all subsystems, e.g. electronic components behavior, magnetic hysteresis, mechanical material behavior
- **Time-dependent models** with rather different time constants of the subsystems, e.g. of the electrical and thermal
- **Heterogeneous system models** which couple subsystems from different simulation tools, e.g. network simulators and finite-element-solvers
3. Examples

- Electromechanical clock
- Tripping unit of a circuit breaker with a Magnetic Shape Memory alloy
- Electromagnetic Braille printer
Electromechanical clock
System Dynamics Model

- Rigid bodies with point-mass
- Elasticities, stoppers
- Friction, damping
- Implemented in *SimulationX*

Actuator System

- Lavet step motor
- Electrical control unit
- Six gears
- Manual correcting actuator with an additional gear
- Friction clutches
- Second hand, minute hand, short hand
Dynamic System Model

- Objective → Minimizing power consumption
Tripping unit of a circuit breaker with a MSM alloy

- Used to break overloads and short circuits in power grid systems
- Tripping unit with solenoid and thermostatic bimetal
- Solenoid works as a sensor and actuator as well

Bindl et al. 2011
Magnetic Shape Memory (MSM) alloy

- Innovative principle based on so-called magnetic shape memory alloys, e.g. NiMnGa alloy system
- External magnetic field controls the crystal orientation and shape
- Effect is reversible with a remarkable hysteresis

Stroke of a MSM alloy by moving twin boundaries under external magnetic fields

Bindl et al. 2011
MSM hysteresis behavior

Bindl et al. 2011
Tripping Unit Principle and Dynamic System Model

1 Electrical conductor
2 Iron core
3 MSM element
4 Latch mechanism

Bindl et al. 2011
Design Optimization

- Based on the system model
- Objective \rightarrow Tripping time and overall volume to be minimized

![Graph showing displacement, flux density, and time](image)

Initial solution – 34 mm high

Optimized design – 22 mm high
Electromagnetic Braille Printer

- Based on a design with a minimum of elements
- Function:
 - A needle embosses paper sheets
 - Paper as a nonlinear elasto-plastic counterforce load
 - Dynamic forces of the masses
 - Nonlinear magnetic material behavior
Actuator System Design

- **First stage** bases on a rough analytical static model
 \[A_{Cu}, A_{Fe}, N = f(F_{mag}, s_{max}, V_0, P_{Cu}, B_m) \]

- **Second stage** uses a dynamic network model
 - Kirchhoff’s network laws
 - Ampère’s circuitical law
 - Maxwell’s law of induction
 - Maxwell’s eq. for the magnetic force
 - ODE of motion
Actuator System Design

- *Third stage* applies a dynamic network model with characteristic diagrams of the magnetic force and the magnetic flux linkage computed from a static finite-element model.
Simulated dynamic behavior

- Embossing cycle
- Objective of the design optimization → cycle time to be minimized
Simplified network model

- Magnetic transducer as time dependent force depending on geometry parameters
- Implemented in *SimulationX 3.4*
- Starting point for testing the interface *OptiSlang – SimulationX*
4. Challenges for design optimization

- System simulations are time-consuming due to
 - Multiphysics models
 - Heterogeneous models (e.g. network and finite element)
 - Non-linear behavior
 - Dynamic simulations (time range)
- Design space dimensions in the range of 5 ... 100 typically
- Only small subspaces contain valid designs
- Constraint and objective functions often have a complicated shape