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Figure 10: Optimized designs with different ARSM settings, Meta model with 8 parame-
ters, W H A = 60◦, set value 0.45 %
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are tested by the ALHS method to construct the Meta-Meta model. According to the
CoP -value of 23 %, the approximation quality of the Meta-Meta model is not sufficient.
However, a lower CoP is acceptable or even expected, because the CoP is ensued by a
variance-based statistical method. The CoP indicates the percentage of the variance of
the system response covered by the regression. The variance with noise is not completely
accounted for by regression. Figure 11 directly demonstrates the significance of each design
parameter for the robustness (variation). According to it, the parameter R SpH VZ has
the most impact on the AS.
The convergence curve during the optimization process is an important indicator for
the efficiency and accuracy of the results. With consideration of the noise, the objective
function value σ converges insufficiently and slowly - up to 30 iterations - to the local
optimum, while without consideration of the noise it converges quickly to the global
optimum (up to 10 iterations), see Figure 12.
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Figure 12: Comparision

The design determined by the Meta-Meta model is finally validated by 30 repetitive ro-
bustness analyses using the Meta model. The mean value of the 30 standard deviations
corresponds very well with the results from the Meta-Meta model. The results from RDO
are listed in comparison to the results of TM in Section 5.3.

5.2 Parameter optimization according to TM

The parameter space for the sensitivity analysis and for the Meta model must first be
defined. Compared to RDO, TM after SMAR2T Kemmler et al. (2015) considers both
the significant and the insignificant parameters for the sensitivity analysis and as well
for creating the Meta model, which means that the full parameter space is examined in
AS. The MOP is a quadratic regression without coupling terms involving no correlation,
see Figure 13. The CoP of the Meta model of 98 % is quite satisfying, but the sum of
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the individual CoP is 120 %. The correlation due to small A VZ must be eliminated,
according to RDO.
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Figure 13: Significance of all parameters (left) and the MOP: quadratic regression with
uncoupled terms (right)

5.2.1 Design of Experiment

As mentioned in Chapter 2, with the Taguchi method an experimental design is created
in order to recognize the effects of the parameters on the objective function. A distinction
is made between inner and outer arrays.

Inner array

Table 9 shows an overview of all control factors on three factor levels. The lower (LSL)
and upper limits (USL) of the control factors are each limited to 10 % of the entire area
inwards to avoid inaccuracy of the Meta model at the border area. That provides the
possible application of a tolerance analysis, see Figure 14. An orthogonal array L27 is
used for nine control factors on three levels (27 experimental settings), see Figure 16.

10 % 10 %

LSL mean value USL

Figure 14: Restriction of the limits of variation

Outer array

Normally, in TM the outer array considers only the outer noise factors that are not
connected to the control factors, such as the variation in operating temperature, material
characteristics, and load. The classic Taguchi arrays can be used if
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Table 9: Control factors (geometric parameter) on three setting levels for the inner array

No. Parameter Unit UG µ OG

1 D H VZ I [mm] 29.5500 29.8200 30.0900
2 R H VZ [mm] 0.5775 0.8138 1.0500
3 R H R I [mm] 0.6400 0.8000 0.9600
4 S H [mm] 0.6400 0.8000 0.9600
5 W H A [◦] 44.0000 60.0000 76.000

6 D SpH VZ A [mm] 29.3300 29.4500 29.7500
7 R SpH VZ [mm] 1.7350 1.8750 2.0150
8 S SpH [mm] 0.8400 1.0000 1.1600
9 R SpH R A [mm] 0.8000 1.1000 1.4000

• the control factors do not vary in practice,

• the variation of control factors can not be controlled or is very difficult to estimate,

• there is a linear correlation (first order) between the control factors and the target
value.

In other cases, depending on the optimization strategy and capacity, only the significant
or even all control factors are considered as noise factors in the outer array.
As is apparent from the sensitivity analysis, the control factors (geometric parameters)
and their variation from manufacturing tolerances have a decisive influence on the AS. In
addition, the Meta model is determined from a quadratic regression. In this regard, these
variations must be considered as internal noise factors.
One fundamental difference between TM and RDO is described by the distribution of
the variation. In RDO, the normal distributions of the input parameters are displayed on
samples, causing the objective function value to be distributed in a realistic manner. In
contrast, the normal distributions of the parameters in TM are converted to an appro-
ximately equal distribution (D’Errico and Zaino (1988)). Therefore, the parameters are
either tested on three stages, the upper specification limit (USL), the mean value µ, and
the lower specification limit (LSL), or in two stages (USL, LSL) in order to represent
the variation in the system. The transformation can be carried out with the following
notation:

µ± σ
√

3 . (6)

With two stages to be tested, the mean value is neglected. A very good estimation of the
variation of this transformation is achieved after D’Errico and Zaino (1988).
For each setting stage of the parameters, the variation of the inner noise factors is conver-
ted on three stages. Figure 15 shows the variation of the parameter R SpH VZ, where the
standard deviation is σ = 0.0125. With the notation 6, USL and LSL are set to ±σ ·

√
3

or ±0.022.
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Figure 15: Implementation of the inner noise factors on the example of R SpH VZ

The 9 inner noise factors are tested on three levels, while the 7 outer noise factors are
tested on two stages. According to Figure 16, an orthogonal array L36 with 36 tests is
needed for the outer array. A new outer field is created in each test setting of the control
factors, in which the inner noise factors are adjusted to the nominal values of the controlled
factors. A total of 27 · 36 = 972 tests are performed by the MOP for the subsequent mean
value and S/N analysis.

5.3 Evaluation of results from the optimization methods

In applying TM, the same Meta model is used as in the RDO, and contains all control
and noise factors. After testing 27 · 36 = 972 samples, the effects of the control factors on
the mean value and the S / N ratio of AS are determined see Figure 17. Here, the S/N
ratio is calculated by “The nominal best type II“. The higher the S/N ratio, the more
robust the product is.
In TM, the variation of the objective function value is initially reduced by setting the
adjustment levels for all control factors. This maximizes the S/N ratios. However, with
strict implementation, the mean value shifts. Thus the mean value must be adapted to
the target value. Here, the adjustment levels of the control factors R H VZ, D SpH VZ A
and R SpH VZ are not changed. The subsequent adjustment of the mean value is carried
out by varying the parameters D H VZ I and R SpH R A.
Similar trends in the main effects of AS are detected using DOE (TM) and Meta-Meta
model (RDO), especially by the significant parameters D H VZ I, R H VZ, D SpH VZ A
and R SpH VZ, see Figure 17. Table 10 presents a comparison of the best designs from
RDO and TM. For most design parameters, particularly for the significant parameters,
there is only a minimal deviation. The deviations cannot be avoided because when apply-
ing TM, the control factors are only graded in a very rough manner. The deviations of the
parameters S SpH and R SpH R A are relatively large. The reason is that their parameter
levels are set with a small priority for low significances to minimize the deviation of the
mean value.
The robustness analysis by ALHS for the two best designs provides an equal standard de-
viation of 0.092◦, when all noise factors are considered. However, the S/N ratios of DOE
and ALHS do not correspond correctly. With the application of the Taguchi Method, the
optimized S/N ratio by using DOE is about 18.25 (standard deviation of 0.122◦), compa-
red to the S/N ratio of 20.7 using ALHS (standard deviation of 0.092◦). This deviation
is caused by the different methods of implementing the distribution function.
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Table 10: Comparison of the best designs by RDO and TM

No. Parameter Unit Best Design RDO Best Design TM Deviation [%]

1 D H VZ I [mm] 29.80 29.82 0.07
2 R H VZ [mm] 0.60 0.58 3.45
3 R H R I [mm] 0.63 0.64 1.59
4 S H [mm] 0.77 0.80 3.75
5 W H A [◦] 54 60 11.11

6 D SpH VZ A [mm] 29.60 29.57 0.10
7 R SpH VZ [mm] 1.700 1.735 2.35
8 S SpH [mm] 0.8 1.0 20.00
9 R SpH R A [mm] 1.1 0.8 37.5.

Phi AS [◦] 0.82 0.79 3.66
Sigma all ALHS [◦] 0.091 0.092 (DoE: 0.122) 1.09

*the parameters in bold are significant

*Sigma all: with all noise factors

Table 11: Fundamental differences of RDO and TM

TM RDO

+ relatively simple method + mean value and nominal value are
optimized separately

+ lower number of tests + high automization
+ flexible with few parameters + definition of constraints possible

and uncoupled CF and NF
+ very robust method, suitable for + fast adaption of the target value

early PDF or validation phase
+ Meta modeling not mandatory + fast adaption of new tolerances

(but difficult with noise)
+ multiobjective optimization possible
+ optimization of up to 100 parameters
+ no additional expense when

extending parameters

- manual consideration of constraints - no consideration of non-significant
- no definiton of the random parameters

target value
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The best design with this present setting level combination is validated by MOP. The
calculated nominal output clearance is 0.79◦. This imprecision can not be avoided because
of the coarsely graded control factors. In summary, the two methods provide very similar
results.
Compared to RDO, TM considers the four most significant parameters. A smaller outer
array (L9) instead of L36 is used, and a similar design with high accuracy is achieved, when
compared to RDO. In summary, both methods are compared in Table 11 with regards to
their flexibility of application.

6 Instruction RDO and Taguchi

Based on the results presented, we have derived a recommendation for action for applying
the two methods and visualized it using a flow chart, see Figure 18.

7 Discussion and summary

Many similarities can be found between the two optimization methods, as we have seen
in the present investigation. If the same Meta model is used, similar results are achieved
using TM and RDO, and robustness can be optimized. The TM is in general a universally
applicable method that is mainly used in the statistical design of experiments (DOE).
Due to the low number of tests it requires, this method can be used to carry out real
experiments as well as simulations. This means that a Meta model is not mandatory.
Possible noise in the results is prevented by converting parameter distribution functions
into equal distribution with coarsely graded control factors.
However, TM is only limited to relatively simple optimization problems with a low number
of parameters due to its manual optimization procedure. If boundary conditions need to
be considered when optimizing, the optimization is more complicated and more expensive.
In addition, an optimization aiming towards a coarse gradation of the control factors is not
very easy to achieve. Furthermore, the calculated standard deviation (S/N ratio) should
only be used to compare different parameter combinations. The actual value must be
validated by ALHS because of the inaccurate implementation process of the test variations
or robustness analysis.
In comparison with RDO, TM aims primarily to increase system robustness. However,
the optimization process is performed manually using orthogonal arrays instead of with
the help of optimization algorithms. The parameters are clearly separated by arrays here,
but no multi-objective optimization can be realized.
According to the sensitivity analysis, depending on simulation strategy and capacity,
either all or only the significant control and disturbance variables are considered. The
significant parameters are preferred in RDO, which may be both noise factors and control
factors. Examination of too many parameters causes noise to affect the approximation
quality of the MOP and the optimization algorithm. In TM, it is less expensive to take
all parameters into account by using a larger orthogonal array for the DOE. However,
in this case the tolerance limits must be chosen wisely, otherwise the significances are
covered . When optimizing manually, non-significant parameters can be optimized with
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low priorities at the end.
A specific procedure is presented in the form of a flow chart in Chapter 6 as a summary
of this paper, see Figure 18.
In further investigations, the integration possibility of the variation should be examined
with coarse gradation instead of classic sampling in RDO. This would prevent incidental
noise. Subsequently, optimization with the actual variation of the best designs should be
checked using the robustness analysis with classical sampling. This addition allows the
advantages of both methods to be combined.
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