Brake Squeal: A Challenge

Karthik Chittepu
1. Motivation
2. Background
3. Robustness Evaluation
Brake Noise Types

- Friction Noise
- Wire Brush
- Moan
- Hot Judder
- Squeal
- HF Squeal
- Groan

Drum Brakes

Disc Brakes

50Hz 500Hz 5000Hz

Courtesy: TRW
Motivation

- NVH field complaints and warranty costs
- Permanently increasing customer requirements and targets
- Complexity and Competition
- Correlation between simulation, bench and vehicle
Motivation

Courtesy: Daimler AG
Operating Points

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Distribution</th>
<th>Mean</th>
<th>COV</th>
<th>Stddev</th>
<th>Lower Cut</th>
<th>Upper Cut</th>
<th>Format</th>
<th>Active</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>friction_disc_pad</td>
<td>Uniform</td>
<td>0.6</td>
<td>0.096225804486493</td>
<td>0.057753502618996</td>
<td>0.7</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ROTATION_VELOCITY</td>
<td>Uniform</td>
<td>2.5</td>
<td>0.346101651561377</td>
<td>0.83602584378443</td>
<td>1.0</td>
<td>4.0</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OPERATING_PRESSURE</td>
<td>Uniform</td>
<td>10.25</td>
<td>0.349186881426228</td>
<td>5.629165124598852</td>
<td>50.0</td>
<td>200.00</td>
<td>N1.613e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DISK</td>
<td>Uniform</td>
<td>9.568</td>
<td>0.074039265280072</td>
<td>7.216878364973523</td>
<td>8.567</td>
<td>1.168</td>
<td>N4.7e-7</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EL_Pad</td>
<td>Normal</td>
<td>1.283E7</td>
<td>0.032</td>
<td>11.890000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ES_Pad</td>
<td>Uniform</td>
<td>7.500000</td>
<td>0.013245008972987</td>
<td>14.453757737406</td>
<td>500000.0</td>
<td>1000000.0</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Material Properties

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Distribution</th>
<th>Mean</th>
<th>COV</th>
<th>Stddev</th>
<th>Lower Cut</th>
<th>Upper Cut</th>
<th>Format</th>
<th>Active</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SHIM_ADHESIVE</td>
<td>Normal</td>
<td>5000000</td>
<td>0.01</td>
<td>500000</td>
<td>0</td>
<td>-</td>
<td>N3.0e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SHIM_ELASTOMERIE</td>
<td>Normal</td>
<td>5000000</td>
<td>0.01</td>
<td>500000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SHIM_STEEL</td>
<td>Normal</td>
<td>2.180</td>
<td>0.01</td>
<td>2100000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AL</td>
<td>Normal</td>
<td>7.129E7</td>
<td>0.01</td>
<td>7129000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AL_KNUCKLE</td>
<td>Normal</td>
<td>7.129E7</td>
<td>0.01</td>
<td>7129000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AL_TCA</td>
<td>Normal</td>
<td>7.129E7</td>
<td>0.01</td>
<td>7129000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AL_SUSPENSION</td>
<td>Normal</td>
<td>7.129E7</td>
<td>0.01</td>
<td>7129000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Caliper</td>
<td>Normal</td>
<td>1.600</td>
<td>0.01</td>
<td>1600000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>inner_shoe</td>
<td>Normal</td>
<td>2.050E6</td>
<td>0.01</td>
<td>2050000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>outer_shoe</td>
<td>Normal</td>
<td>2.050E6</td>
<td>0.01</td>
<td>2050000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Anchor</td>
<td>Normal</td>
<td>1.700E6</td>
<td>0.01</td>
<td>1700000</td>
<td>0</td>
<td>-</td>
<td>N2.013e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Steel</td>
<td>Normal</td>
<td>2.186</td>
<td>0.01</td>
<td>2180000</td>
<td>0</td>
<td>-</td>
<td>N1.1e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ST1006</td>
<td>Normal</td>
<td>2.186</td>
<td>0.01</td>
<td>2180000</td>
<td>0</td>
<td>-</td>
<td>N1.1e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D4512</td>
<td>Normal</td>
<td>1.788</td>
<td>0.01</td>
<td>1780000</td>
<td>0</td>
<td>-</td>
<td>N3.2e-6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Riston</td>
<td>Normal</td>
<td>2.687</td>
<td>0.01</td>
<td>2680000</td>
<td>0</td>
<td>-</td>
<td>N3.1e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SHIM_ADHESIVE_RHO</td>
<td>Normal</td>
<td>3.025E-6</td>
<td>0.01</td>
<td>3.000000000000000</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SHIM_ELASTOMERIE_RHO</td>
<td>Normal</td>
<td>3.025E-6</td>
<td>0.01</td>
<td>3.000000000000000</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SHIM_STEEL_RHO</td>
<td>Normal</td>
<td>7.820E-6</td>
<td>0.01</td>
<td>7.820E-8</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>AL_RHO</td>
<td>Normal</td>
<td>2.768E-6</td>
<td>0.01</td>
<td>2.768E-8</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>AL_KNUCKLE_RHO</td>
<td>Normal</td>
<td>2.768E-6</td>
<td>0.01</td>
<td>2.768E-8</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>AL_TCA_RHO</td>
<td>Normal</td>
<td>2.768E-6</td>
<td>0.01</td>
<td>2.768E-8</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>AL_SUSPENSION_RHO</td>
<td>Normal</td>
<td>2.768E-6</td>
<td>0.01</td>
<td>2.768E-8</td>
<td>0</td>
<td>-</td>
<td>N1.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DISK_RHO</td>
<td>Normal</td>
<td>7.035E-6</td>
<td>0.01</td>
<td>7.035E-8</td>
<td>0</td>
<td>-</td>
<td>N4.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Caliper_RHO</td>
<td>Normal</td>
<td>7.035E-6</td>
<td>0.01</td>
<td>7.035E-8</td>
<td>0</td>
<td>-</td>
<td>N4.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Riston_RHO</td>
<td>Normal</td>
<td>2.095E-6</td>
<td>0.01</td>
<td>2.095E-8</td>
<td>0</td>
<td>-</td>
<td>N4.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>inner_shoe_rho</td>
<td>Normal</td>
<td>7.865E-6</td>
<td>0.01</td>
<td>7.865E-8</td>
<td>0</td>
<td>-</td>
<td>N4.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>outer_shoe_rho</td>
<td>Normal</td>
<td>7.865E-6</td>
<td>0.01</td>
<td>7.865E-8</td>
<td>0</td>
<td>-</td>
<td>N4.0e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Anchor_RHO</td>
<td>Normal</td>
<td>7.295E-6</td>
<td>0.01</td>
<td>7.295E-8</td>
<td>0</td>
<td>-</td>
<td>N3.3e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>D4512_RHO</td>
<td>Normal</td>
<td>7.295E-6</td>
<td>0.01</td>
<td>7.295E-8</td>
<td>0</td>
<td>-</td>
<td>N5.2e-4</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Lining_RHO</td>
<td>Normal</td>
<td>7.295E-6</td>
<td>0.01</td>
<td>7.295E-8</td>
<td>0</td>
<td>-</td>
<td>N7.1e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>ST1006_RHO</td>
<td>Normal</td>
<td>7.295E-6</td>
<td>0.01</td>
<td>7.295E-8</td>
<td>0</td>
<td>-</td>
<td>N1.1e-5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>KNUCKLE_SHAPE1</td>
<td>Uniform</td>
<td>0.5</td>
<td>0.577500269096250</td>
<td>0.200675134569401</td>
<td>0.0</td>
<td>1.0</td>
<td>N6.4e-1</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>KNUCKLE_SHAPE2</td>
<td>Uniform</td>
<td>0.5</td>
<td>0.577500269096250</td>
<td>0.200675134569401</td>
<td>0.0</td>
<td>1.0</td>
<td>N6.4e-1</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

- CAE based robust design optimization helps in mitigating NVH risk by
 - Robustness Testing
 - Production NVH quality control

Target: Focused to find best solution taking into account the influence of the uncertain parameters

Courtesy: Daimler AG
CAD Model – Car Brake and Suspension

- Friction Material
- Backingplate
- Anchor (Caliper)
- Caliper
- Pistons
- Hub Unit
- Wheel Bearing
- Lower Arm
- Knuckle Brake Disc
- Tension Strut
- Steering Rod
- Wishbone

Courtesy: Daimler AG
Background: Brake Squeal Analysis

- Equation of motion:

\[M\ddot{x} + C\dot{x} + Kx = 0 \]

where calculated Eigen values are \(\lambda = \alpha + i\ \omega \)

\(\alpha \) = Real part of solution = Damping coefficient

\(\omega \) = Imaginary part of solution

- \(x(t) = A * e^{\lambda t} = A * e^{(\alpha+i\omega)t} \)

\(= e^{\alpha t} (A_1 \cos \omega t + A_2 \sin \omega t) \)

- Stable/unstable modes:

\(\alpha < 0 \) Stable mode

\(\alpha > 0 \) Unstable mode

- Squeal Propensity:

\(g \gg -2\alpha / |\omega| = 2\alpha \)
Background: Brake Squeal Analysis

- Without Friction: Independent Eigenmodes
- Convergence of Eigenfrequencies with increasing K
- Mode Coupling at K_{crit}
- Unstable System (Squealing Propensity)
Why Robustness Analysis

- Noise problem identification
- Deterministic FE simulation was not able to find the critical frequency
- To find best solution taking into account the influence of uncertain parameters.
1. Define the Uncertainties:
 Ball Joints, Bearings stiffness, Material /Geometry, Brake Pressure

2. Simulate random parameters

3. Generate set of random specimen, replace in FE assembly to compute

4. Post processing
Robustness Evaluation: Material Tolerance

- Variation of all design parameters leads to a high variation not only in squeal propensity but also in the frequency at which instability occurs
- From the histogram, coefficient of variation is 118% which is extremely high
- The system is **NOT Robust**

![Graph showing variation in squeal coefficient and frequency](image)

Courtesy: Daimler AG
Robustness Evaluation: Geometric Tolerance

Map surface node to measurement (triangularization)

Define varying surface node

Interpolation, relaxation, repair of FE-mesh

Measure geometric deviations

Replace part in assembly

Imperfect Structure vs. Reference

Imperfection Z component
Geometrical tolerance has significant influence on results when compared to material tolerances.
Robustness Evaluation: Joint Tolerance

- Bearings, Ball Joints and Kinematic description

Courtesy: Daimler AG
Robustness Evaluation: Joint Tolerance

- Frequency identified
- Additional optimization to fix the problem
Conclusions

• optiSLang have completed the necessary methodology to support serial use for robust design optimization
• Brake squeal is a very complicated phenomena, due to this factor robustness analysis is important to understand its behaviour
• In the virtual model, the phenomenon which are found in the reality could be identified by robustness analysis
• Identification of problems early in the virtual prototyping stag
• CAE approach mitigates NVH risk in production and increases NVH model quality and robustness
 ➢ Better Identification of main influences
 ➢ Better prediction of system behavior
 ➢ Results fitting better with bench vehicles